DNA Instability at Chromosomal Fragile Sites in Cancer

نویسندگان

  • Laura W Dillon
  • Allison A Burrow
  • Yuh-Hwa Wang
چکیده

Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease

DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed ...

متن کامل

Chromosomal fragile site FRA16D and DNA instability in cancer.

It has been proposed that common aphidicolin-inducible fragile sites, in general, predispose to specific chromosomal breakage associated with deletion, amplification, and/or translocation in certain forms of cancer. Although this appears to be the case for the fragile site FRA3B and may be the case for FRA7G, it is not yet clear whether this association is a general property of this class of fr...

متن کامل

Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast.

We report here that a normal budding yeast chromosome (ChrVII) can undergo remarkable cycles of chromosome instability. The events associated with cycles of instability caused a distinctive "sectoring" of colonies on selective agar plates. We found that instability initiated at any of several sites on ChrVII, and was sharply increased by the disruption of DNA replication or by defects in checkp...

متن کامل

Common chromosomal fragile site FRA16D mutation in cancer cells.

Neither the molecular basis for common fragile site DNA instability nor the contribution of this form of chromosomal instability to cancer is clearly understood. Fragile site FRA16D (16q23.2) is within regions of frequent loss-of-heterozygosity (LOH) in breast and prostate cancers, is associated with homozygous deletions in various adenocarcinomas and t(14;16) chromosomal translocations in mult...

متن کامل

Common Fragile Sites: Genomic Hotspots of DNA Damage and Carcinogenesis

Genomic instability, a hallmark of cancer, occurs preferentially at specific genomic regions known as common fragile sites (CFSs). CFSs are evolutionarily conserved and late replicating regions with AT-rich sequences, and CFS instability is correlated with cancer. In the last decade, much progress has been made toward understanding the mechanisms of chromosomal instability at CFSs. However, des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010